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2 HENRY H. KIM

Lecture 1. Langlands functoriality conjecture.

Let’s start with a simple question: For which primes p does z2 —2z —1 =0
(mod p) have 2 solutions?

This is equivalent to the following question: Let L = Q(v/5). Then for which
prime p splits completely in L?

The answer is given as follows: Let P(L/Q) = {p|p splits completely in L}.
Then by the definition of Legendre symbol, P(L/Q) = {p| (g) = 1}. By direct
calculation, we can see that P(L/Q) contains 11, 19, 29, 31, 41, 59, 61... If we look
at the list carefully, we can see that they are primes congruent to 1, 4 modulo 5.
Indeed, by quadratic reciprocity law, (%) = (%) Hence P(L/Q) = {p|p = 1,4
(mod 5)}.

More generally, let L/K be a Galois extension and let P(L/K) be the set of
prime ideals in K which split completely in L.

Fact. P(L/K) determines L completely.

The goal of class field theory is to describe the Galois extension L in terms
of data in K, namely, determine P(L/K) in terms of data in K. When L/K is
abelian, the answer is given completely by the class field theory. For example,
P(Q(¢n)/Q) = {p = 1 (mod m)}, where (,, is a primitive mth roots of unity.
But when L/K is not abelian, not much is known.

Example 1 (cf. [Se]). Consider f(z) = 2> —x — 1. Here the discriminant
is -23. Let L be the splitting field of f. Then Gal(L/Q) ~ S3. If p is un-
ramified, f(z) = 0 (mod p) has 0,1,3 solutions. Then P(L/Q) = {p| f(z) =0
(mod p) has 3 solutions.}. By computer calculation, we see that P(L/Q) =
{59,101,167,173,...}. On the other hand, f(z) = 0 (mod p) has 0 solutions
when p = 2,3,13,29,31,41, ... It is hard to see the pattern. The pattern comes
from modular forms. Let p: S5 — GL2(C) be the 2-dimensional representation
of S3. Then we have the Artin L-function L(s, p, L/Q). It is given by the Euler
product

L(s,p, L/Q) = [ (1 — app™* + (2%) p ),

where a, = Nf(p) — 1, and N¢(p) is the number of solutions for f(z) =0 (mod
p). Here L(s,p,L/Q) = Cf((:;), where E = Q(«), and « is a root of f(z). This

comes from the fact that I ndfj‘l = 1+ p. Here H is the Galois group of L/E,
and H ~ Z/27.

Langlands functoriality. (1) L(s, p, L/Q) is the L-function attached to a mod-
ular form of weight 1, level 23, with respect to the character e(p) = (2%) More
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precisely, L(s, p, L/Q) = L(s, F),

F:qH(l_qk)(l_q23k):Zanqn; q:e2ﬂ'i‘r’7_:x+iy
k=1 n=1
—s p 9\ —
L(s, F) = H(l —app”® + (%)p 2s)=1,
p

(2) P(L/Q) = {plap = 2}.

Example 2 (cf. [Se]). f(z) = z* —z — 1. The Galois group is Sy. Let L be the
splitting field of f and E = Q(«), where « is a root of f. Let H = Gal(L/E).
Then H ~ Ss3, and Ind%‘l = 1+ p, where p : S4 — GL3(C) be a 3-dimensional

representation. We have the Artin L-function L(s, p, L/Q) = Cf(gs)).

In order to attach a modular form to p, we need a 2-dimensional repre-
sentation. So consider an extension L/L such that Gal(L/Q) = GL(2,F3).
Here (GL(2,F3) : S4) = 2. Then we have a 2-dimensional representation o :
GL(2,F3) — GL3(C) such that p = Sym?(o). Langlands functoriality shows
that o is associated to F', a modular form of weight 1, and p is associated to
Sym?(F'), the symmetric square. Write F = > °°  a,¢". Then P(L/Q) =
{pl a, = 2},

Example 3. f(z) = 2° —z — 1. The Galois group is S5. It is not solvable. Let
L be the splitting field of f and E = Q(«), where « is a root of f. Let H =
Gal(L/E). Then H ~ Sy, and Ind3f1 =1+ p, where p: S5 — GL4(C) be a 4-

dimensional representation. We have the Artin L-function L(s, p, L/Q) = CCE(—(:))

We do not have the answer for P(L/Q). We only know its size. Chebotarev
density theorem says that P(L/Q) has Dirichlet density 155.

5

Langlands functoriality conjecture. There exists a cuspidal representation
m = ®mp of GLy4 such that L(s,p,L/Q) = L(s,m), and P(L/Q) = {p| Satake
parameter of T, is diag(1,1,1,1)}.

Weaker assertion (Artin conjecture). L(s,p, L/Q) is entire.

We only know that L(s, p, L/Q) has meromorphic continuation to all of C and
satisfies a functional equation.

More generally, Langlands conjectured that given an irreducible representation
p : Gal(Q/Q) — GL,(C), there exists a cuspidal representation 7 = ®m, of
GL,, such that p(Frob,) =Satake parameter of 7,. It is usually referred to as the
strong Artin conjecture. A weaker assertion, known as Artin conjecture, claims
that the Artin L-function L(s, p) is entire.
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Much effort has been made when n = 2. Let p : Gal(Q/Q) — PGL»(C) ~
SO3(C). Then Im(p) is Dy, (dihedral), A4 (tetrahedral), Sy (octahedral), A
(icosahedral). The first three groups are solvable. It is a theorem of Langlands
and Tunnell that for the case of A4, S4, the strong Artin conjecture is true, and
it has been used by Andrew Wiles in his proof of Fermat’s last theorem.

Cuspidal representations generalize classical modular forms (holomorphic and
Maass forms). They can be understood as “direct summands” of the right regu-
lar representation of G(A) on the Hilbert space L?(G(F)\G(A)), where A is the
ring of adeles. If 7 is a cuspidal representation, then we have a tensor product
decomposition 7 = ® m,, where v runs through all places of F'; 7, is an irre-
ducible, unitary representation of G(F,) for all v; 7, is spherical for almost all
v, namely, it has the Satake parameter (semi-simple conjugacy class) {t,} in G
(the L-group of G).

When G = GLy, F = Q, there are two types of cuspidal representations:
First, cuspidal representations attached to holomorphic cusp forms of weight
k with respect to a congruence subgroup of SLs(Z); m = 7y, where f(1) =

k—

S L apn T €2™n7 7 = g +iy. Then my = ®m,, and the Satake parameter of

mp is diag(ayp, Bp), where a1 = 1,a, = a, + Fp.

Second, cuspidal representations attached to Maass cusp forms. They are
eigenfunctions of the Laplacian; y? (66—;2 + 59—;2) f+ (3 —t*)f =0, where t € iR
ort € R, 0 <t < ;. Then f(r) = > n#0 an|n|~2W(n7), where W(r) =
y2 K, (2my)e?™® and K, is the K-Bessel function.

Ramanujan conjecture. |o,| = |G, =1.

Selberg conjecture. t € iR, or % —t2 > %.
Theorem (Deligne, 1973). Ramanujan conjecture is true for holomorphic
cusp forms.

Most general form of Langlands functoriality conjecture: Let H,G be two
reductive groups. To each homomorphism of L-groups, r : “H — LG, there is
associated a lift (transfer) of automorphic representations of H to automorphic
representations of G which satisfy canonical properties.

Example 1. H = {e}, G = GL,, over Q. Then “’H = Gal(Q/Q) and LG =
GL,(C). Then Langlands functoriality conjecture is the strong Artin conjecture.

Example 2. H = GL3,G = GLy11. Let Sym™ : GLy(C) — GLpy1(C)
be the mth symmetric power representation. We can prove the functoriality for
m < 4. We will explain this in Lecture 3.

Example 3. H = SO02p,+1,502n,,Sp2n, G = GLy, where N = 2n or 2n + 1.



RECENT ADVANCES IN LANGLANDS’ FUNCTORIALITY 5

Then LH = Sp;,(C), SO2,(C), SO2,4+1(C), and r : LH — LG is the embed-
ding. This case is explained in detail by J. Cogdell.

Let us consider very particular Galois representations, namely, monomial repre-
sentations: Given a 1-dimensional character x of H < G, we can form an induced
representation Ind$x. Let (G : H) = n. Then p = Ind§x : G — GL,(C).
It is called monomial representation. We assume that p is irreducible. Let
G = Gal(L/Q), H = Gal(L/E). Then by class field theory, x can be considered
as a grossencharacter of E of finite order, and L(s, Ind$x, L/Q) = L(s, x), Hecke
L-function. Hence L(s, Ind$x, L/Q) is entire, and Artin conjecture is true. How-
ever, the strong Artin conjecture is open. Namely, it is expected that there exists
a cuspidal representation 7 of G L, such that L(s, Ind$x, L/Q) = L(s, 7). We

call 7 automorphic induction, we denote it by ng.

Fact. Langlands functoriality for monomial representations implies Langlands
functoriality for general Galois representations.

Known cases: (1) E/Q is cyclic (solvable Galois). It is a special case of Arthur-
Clozel. (2) E/Q is non-normal cubic extension. It is a result of Jacquet, Piatetski-
Shapiro, and Shalika, a consequence of the converse theorem for GL3. (3) The
Galois closure of E/Q is solvable and x is certain algebraic character. It is a
result of M. Harris.

I will give two examples of non-normal E/Q whose Galois closure is not solv-
able; one is non-normal quintic extension, and the other, non-normal sextic ex-
tension.

Consider f, irreducible quintic polynomial with integer coefficients such that
the Galois group is As. (J. Buhler’s example: f(z) = z°+102 — 1022+ 35z — 18)
Let L be the splitting field of f, E = Q(«a), where « is a root of f. Then
H = Gal(L/E) ~ A4. Let K/E be such that Gal(L/K) be the Klein 4-group
and Gal(K/E) is a cyclic group of order 3. Let x be the grossencharacter of E
attached to K/F by class field theory. It is considered as a character of H.

Theorem. Under certain conditions, I ndffx 1s automorphic, namely, there ex-
ists a cuspidal representation m = ng of GLs such that L(S,Ind‘ésx, E/Q) =
L(s,).

Note that As does not have a 2-dimensional representation. But there exists a
central extension L' /Q such that G’ = Gal(L'/Q) has a 2-dimensional represen-
tation. (For J. Buhler’s example, (L’ : A5) = 20 so that the central character has
order 10.) Let p : G’ — GLy(C). Such p factors through A5 ~ SL(2,Fs), where
Gal(L/Q) = As. In many cases, p is modular, namely, there exists a modular
form f of weight 1 such that L(s,p) = L(s, f). For example, R. Taylor showed
that f(z) = ° — 223 + 222 + 5z + 6 gives rise to such p. The condition in the
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above theorem is that p is modular.

Here I ndg"’x is equivalent to Sym?(p), twisted by a character. Let p give rise
to a cuspidal representation w of GL,. Then Sym®p gives rise to Sym*n. It is a
cuspidal representation of GLs (the result of Kim, Kim-Shahidi. We will explain
this in Lecture 3).

Second example (This is a new result which has not been published elsewhere.):
Let N be the normalizer of a 5-Sylow subgroup in As. It is a group of order 20,
isomorphic to Z/27 x Dig ~ Dayy. Let L/Q be such that Gal(L/Q) = As, and
Gal(L/F) = N. Then F/Q is a non-normal sextic extension. Take a quadratic
character y of N, non-trivial on its 2 component. Namely, let F /F be a quadratic
extension such that Gal(L/F) ~ Dyg. Then y is the quadratic character attached

to F /F by class field theory. Then the induced character I ndﬁ"’ X is equivalent
to Sym5(p), twisted by a character. (It is due to Serre.) If p gives rise to a
cuspidal representation m of GLg, Sym®p gives rise to Sym®w. It is a cuspidal
representation of GLg (the result of Kim-Shahidi, Wang). Hence we have

Theorem. Suppose p is modular. Then Indé"’ X s automorphic, namely, there

exists a cuspidal representation m = ng of GLg such that L(s,I’rLdﬁx, F/Q) =
L(s, ).

Another consequence is that Sym™ (x) is automorphic for all m.

Irreducible representations of G’ are equivalent to a twist of irreducible repre-
sentations of As. We know all irreducible representations of As. Let o,0” be two
2-dimensional representations of Ay, where 7 € Aut(C) sends /5 to —y/5. Then
irreducible representations of Ay are

(1) trivial (1 dim)

(2) 0,07 (2 dim)

(3) Sym?2(o), Sym?(c™) (3 dim)

(4) Sym3(o) ~ Sym3(c7), c ® o™ (4 dim)

(5) Indy? x ~ Sym*(o) ~ Sym*(c™) (5 dim)

(6) Sym?(0) ® 0™ ~ 0 @ Sym?2(c™) ~ Sym?>(c) ~ SymS(c™) (6 dim)

Kim-Shahidi proved that Sym?®(w) is an automorphic representation of G Lg.
S. Wang proved that it is cuspidal. Now Sym™(p) is equivalent to a direct sum of
irreducible representations of As twisted by a character. Each direct summands
is automorphic. Hence Sym™ () is automorphic.
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Lecture 2. Automorphic L-functions and Langlands-Shahidi method.

An L-function is a very special type of meromorphic functions of one complex
variable. On the surface it is not clear why the L-functions play decisive roles. It
was Riemann who introduced his zeta function in order to study the distribution
of prime numbers: The prime number theorem says that 7(z) = > ., 1 ~ 5.
It is equivalent to the fact that {(1 + it) # 0 for ¢ € R. Dirichlet’s theorem on
arithmetic progression says that there are infinitely many primes in the arithmetic
progression an + b, where (a,b) = 1, n = 1,2,... It comes from the fact that
L(1,x) # 0 for a Dirichlet character x mod a.

An L-function is associated to the set A; arithmetic-geometric objects such
as Galois groups, elliptic curves, and Shimura varieties. It is also associated
to the set B; automorphic forms and representations. Langlands conjecture is
that the set B contains the set A. The L-functions in the set B are called
automorphic L-functions. Special case of such relationship for elliptic curves is
called Taniyama-Shimura-Wiles theorem, i.e., elliptic curves over (Q are modular.

Over QQ, an L-function which is associated to an object F' takes the form of
Euler product over all primes p, L(s, F') = [[, Lp(s, F), Lp(s,F) = H;.nzl(l -
a;j(p)p~%)~! for almost all primes, where a;(p) € C. As a function of s € C, this
product converges absolutely for Re(s) >> 0 and we can multiply out to get a

series L(s, F) = > a(n)n™*.

Example (1) Riemann zeta function ((s) = [[,(1 - p )y t=Y" ne.

(2) Dirichlet L-function L(s, x) = [[,(1—x(p)p~*)~" = Y24 x(n)n~°, where
X is a character of (Z/qZ)*.

(3) E:y? =23+ azx + b,a,b € Z. Let Ng(p) be the number of solutions mod
p. Let ag(p) = p— Ng(p). Then L,(s,E) = (1 — ag(p)p~° +p'=2%)~! for p
non-singular. (Without normalization: In order to have a functional equation of
the form s —s 1 — 5, we need to take Ly(s, E) = (1 — ap(p)p~2~* + p~2°)~1)

More explicitly, let E : y?> = 23 — 422 4+ 16. Then we have some numerical
calculations (due to Silverman):

P 2 3 o5 7 11 13 17 19 23 97 239 1327 3733 4817
Ng(p) 2 4 4 9 10 9 19 19 24 104 269 1259 3619 4949
aglp) 0 -1 1 -2 1 4 -2 0 -1 -7 -30 68 114 —-132

Let F = q[[pe;((1—¢*)(1—¢***))? =327 | b,q"™. Here F is a modular form

n—=1
of weight 2. Consider the L-function L(s, F) =Y > bp,n~5. Then
L(s,F)= [[@=bpp~* +p" ) (1 = by 117%) .
p#£11

We have ag(p) = b, for all p # 2.
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(4) Automorphic L-functions. Let m = ®m, be a cuspidal representation of
G(A), where G is a split reductive group. Let LG be the L-group of G. Let
r: G — GLx(C) be a finite dimensional representation of “G. For v ¢ S, m,
is spherical and it gives rise to a Satake parameter (semi-simple conjugacy class)
{t,}, tv € “G. Form the local L-function L(s,m,,r) = det(I — r(t,)q, )~ '. Let
Ls(s,m,7) =[1,¢s L(s, mo,7).

For example, let # = ®m, be a cuspidal representation of GLs(A). Let

diag(aw, B,) be the Satake parameter of m,. Let Sym™ : GL2(C) — G L, 41(C)
be the mth symmetric power representation. Then

L(s,my, Sym™) = [[(1 — o7 Big,*) "
§=0

Central problems: (1) L(s,F) has a meromorphic continuation to all of C
and satisfies a function equation of the form: Let A(s,F) = L(s,F)x (some
v-factors and factors at bad places). Then A(s, F) = €(s, F)A(1 — s, F"), where
F’ is an object related to F' such as a congredient representation. For example,

A(s) = G(s)n=ET(3) = AL —5).
(2) A(s, F') is bounded in vertical strips.

(3) Grand Riemann Hypothesis; non-trivial zeros of L(s, F') are all on Re(s) =

N[ =

(4) Generalized Ramanujan conjecture: |a;(p)| = 1.

(5) Birch, Swinnerton-Dyer conjecture: Let FE/Q be an elliptic curve. The
order of vanishing of L(s, E) at s = 1 (center of symmetry) is equal to the rank
of the group of rational points on E.

Here (3) and (5) are two of seven one million dollar prize problems of Clay
Math. Institute. There are other problems such as Siegel zeros (real zeros close
to 1), and special value problems. For example, L(1,x) contains a class number
of a quadratic extension K/Q, and x is the non-trivial character of Gal(K/Q).

Here even meromorphic continuation is not obvious. For example, it is clear
that [T,—; (moa 4y(1 —p7°)™" converges for Re(s) > 1. We can continue up to
Re(s) > 0. But it is known that it has no meromorphic continuation to all of C.

Let m = ®m, be a cuspidal representation of GL2(A). The L-function L(s,m, Sym™)
was introduced by Langlands to solve Ramanujan and Sato-Tate conjecture. For
example, if we know that L(s, 7w, Sym™) is absolutely convergent for Re(s) > 1 for
all m, then |o*| < g, |87*| < ¢ for all m. This implies that |a,| < qq,#, 1Bu] < qv#
for all m. Since |a,(,| = 1, we have |a,| = |5,| = 1. Kim-Shahidi proved mero-
morphic continuation and functional equation for m < 9.
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Let m = ®m, be a cuspidal representation of M(A), where 7, is spherical for
v ¢ S. Let ¥ = ®, be a fixed character of A/F.

Conjecture (Langlands). For v € S, we can define a local factor L(s,m,,r)
(of the form P,(q;*)~!, where P, is a polynomial with constant 1), and a local
e-factor €(s, Ty, r,¢y) (monomial in q,°) such that L(s,m,7) = [, , L(s, Ty, T)
has a meromorphic continuation to all of C and satisfies a functional equation

L(s,m,7) = e(s,m,7)L(1 — s,7,7), where 7#(g) = tr(g)~!.

There are two ways of studying automorphic L-functions:

(1) method of Rankin-Selberg (integral representations); expresses L-functions
as integrals of Eisenstein series, theta functions, etc. For example, Riemann
proved that

TIGKE = [ ety 6@ -, 6@ =3 e

T

The Poisson summation formula gives rise to the functional equation of the theta
function, §(z~!) = z26(z), and the functional equation of the Riemann zeta
function follows.

(2) Langlands-Shahidi method; uses Eisenstein series attached to maximal par-
abolic subgroups.

We will briefly explain Langlands-Shahidi method. Let P = M N be a maximal
parabolic subgroup of G. Let 7 be a cuspidal representation of M(A). Then we
can form an induced representation, for s € C,

I(s,7) = Ind$m ® exp(si, Hp()),

where & is the fundamental weight corresponding to «, and « is a simple root
such that P is associated to A — {a}. (A is the set of simple roots) For example,
if P= MN C Spa,, M ~ GL, (Siegel parabolic subgroup), then I(s,7) =
Ind$r ® |det|®.

Given fs € I(s, ), we define an Eisenstein series

E(s,fs,9)= Y,  [fs(v9)-

YEP(F)\G(F)

Let Ey(s, fs,9) = fN(F)\N(A) E(s, fs,ng)dn. It is called constant term. If P is
self-conjugate (most cases),

EO(Safs’g) :fs(g)"i_M(SaW)fs(g)’ M(Saﬂ-)fs(g) :/ fs(wo_lng)dn,

N(A)
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where wq is a Weyl group element. M (s, ) is called global intertwining operator
from I(s,m) to I(—s,wq(m)).

Langlands proved that the poles of E(s, fs,g9) and M(s, ) are the same and
they have meromorphic continuation to all of C and satisfy a functional equation

E(_S’M(Saﬂ-)fsag) = E(Sa fsag)'
Let fs = ®f, and I(s,7) = ®I(s,7m,). Then M(s,7) = QA(s, Ty, wp), where

A(Saﬂ'v;IlUO)fv(g) = / fv(wo_lng) dn.

N(Fy)

It is called local intertwining operator. For almost all v, f, is the unique K,-fixed
vector in I(s,m,) such that f,(e) = 1. Then Langlands proved (1971),

L(is, 7y, 7;)

A(S 7TU,’11)0 H L +ZS Wu,Tz)fU’

where f, is the unique K,-fixed vector in I(—s, wo(m,)) and r; is certain irre-
ducible finite-dimensional representation of M. Hence

" Lg(is,m,m;) =
v v A Y vy v-
H " Ls(1+is,m,m;) Bugs fo ® Sues A5 T, wo) f

By induction, this gives a meromorphic continuation of Lg(s,m,r;) for each i.
But it does not give the desired functional equation.

At the suggestion of Langlands, Shahidi calculated i-Fourier coefficients of
E(s, fs,g) for globally generic cuspidal representations, where 1) is a generic
character of U. Here U is a maximal unipotent subgroup such that B = TU
is a Borel subgroup. Then v¥5; = 9|y,, is a generic character of Uy = U N M.
We say that m = ®m, is 1pr-globally generic if fUM(F)\UM(A) o(ug)hpr (u) du # 0
for a cuspidal function ¢ in the space of w. This implies that each 7, is locally
generic, i.e., has a Whittaker model. If Ay, (s,m,) is the Whittaker functional
for the space of I(s,,), then by the uniqueness of Whittaker functional up to a
constant,

A, (8, Ty) = Cy, (8, Ty, Wo) Ay, (=8, wo () A(S, Ty, Wo),

for some constant Cy, (s, 7y, wq) € C.

Consider -Fourier coefficient of Eisenstein series

E’lp(sa.fSag) :/ E(s,fs,ug)Wdu.
U(F)\U(4)
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Then Shahidi showed that

E¢(S, fsae) = Wv(ev) = )‘d)u (Saﬂv)(fv)-

12, Ls(1 +is,m, ;)

Functional equation of Eisenstein series implies

m
H (is,m,7;) H Cy, (8, Ty, wo HLS — 08, T, ;).

Induction on ¢ and detailed analysis of Cy, (s, Ty, wo) lead to the definition
of local factors L(s,m,,7;), €(s, Ty, Ti,1y) for v € S, and the functional equation
L(s,m,r;) = €(s,m,r;)L(1 — s, m,7;) (Shahidi 1990).

But it had been thought that the location of poles is hard to obtain from
Langlands-Shahidi method. Things changed by using spectral theory:

Langlands’ Lemma. Consider the residual spectrum L* = L2, (G(F)\G(A)) (p,x)-
(1) L? = {0} unless wom ~ 7.
(2) L? is spanned by the residues of E(s, fs,g) for s > 0.
(3) Suppose E(s, fs,9) has a pole at s = sq. Then L? = {®,J(s,m,)}, where
J(s,my) is the image of N(s,m,,wp), the normalized local intertwining
operator, namely,

m
L(is, my,1;)
N .
S anwo H L 1+1s, 71'1,,?"1) (isaﬂ-v;ri) (S’ﬂ-v’wO)
Then
*) 0 =] g iomr) g, N(s,my,up)
L1 +is,m r)e(is, m,rs) e T

=1

(1) and (2) imply that M (s, ) is holomorphic for s > 0 unless wom ~ 7.

Trick. wo(m ® x) # 7 Q x if x is a gréssencharacter which is highly ramified at
one finite place.

We denote 7 ® x by m. Then M(s, ) is holomorphic for s > 0.

We have to show that each local operator N(s,m,,wp) is holomorphic and
non-vanishing for Re(s) > % This requires the study of representations of p-adic
groups. The main ingredients are the following standard module conjecture and
classification of discrete series representations.
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Standard module conjecture. Given a non-tempered generic representations
Ty, there is a tempered data mg and a complexr parameter Ay which is in the
corresponding positive Weyl chamber so that m, = Ip, (Ao, 7o) = Ind%o(wo ®
<Ao,Hp ( )>)

v :

According to Langlands, any non-tempered representation 7, can be written as
a Langlands’ quotient, namely, the quotient of Iz, (Ag, o). The above conjecture
claims that if 7, is generic, 7, is Ips, (Ao, mo) itself.

Theorem. Ezcept for certain cases (for the exact list, see [Ki2].) the local nor-
malized intertwining operators N (s, m,,wqy) are holomorphic and non-vanishing

for Re(s) > 1.

Let us illustrate it with an example of GL,, x SO2,+1. Let o, m, be generic
unitary non-tempered representations of GLy,(F,), SO2n+1(Fy), resp. By the
standard module conjecture proved by Muié, o,, 7, can be written as follows:

oy = Ind (|det|* 01 ® - - ® |det|*?op ® Opy1 ® |det| o, ® - -- ® |det| " o1),
T, = Ind (|det/P'ny ® - - - @ |det|Prr, ® T9),

where 0 < ap < -+ < oy < %, 0< By <+ < pr,and oy, 75,9 = 1,---,p,
j=1,---,q, are discrete series representations of GL(F},), 1o (resp. opt+1) is a
generic tempered representation of SOg,y1(Fy) (resp. GL(F})).

First we need to prove that 3; < 1. Next we have

I(s,0, ® my,) = Ind (|det]*T* 01 ® -+ ® |det|*T*? 0, @ |det|*op1®
|det|* %0, ® - - ® |det|* ™01 ® |det|Pr ® -+ ® |det|PaT, @ 10).

Then N(s,0, ® m,, wp) is a product of the rank-one operators
N(s*ta; £06;,0:07;), N(2sta*+a;,0;00;), N(s*taw,o® 1),

where 7} is either 7; or 7; and o7 is either o or 7;. Here, for the sake of simplicity
of notation, we have dropped the dependence of the local normalized operators
on the Weyl group elements since these elements do not play any role in the
argument.

For all s such that Re(s) > %, since 0 < ap < ++- <y < % and 0 < 3, <
- < p1 < 1, we have Re(s + o; = §;) > —1 and Re(2s + a; £+ ;) > —1.
Hence the operators N(s + a; & 3;,0; ® 7}) and N(2s + o; + o, 03 ® 073), both
corresponding to the case GLy X GL; C GLj, are holomorphic for Re(s) > 1.
For this result, one needs a classification of discrete series representations of GL,,.

Next, we consider the operator N(s + a;, 0; ® 19) which corresponds to the case
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GLyxS02,41 C SO2q42+11. Since 0; @7y is tempered, the operator N(s, 0;®79)
is holomorphic for Re(s) > 0. Consequently N (s =+ «;,0; ® 19) is holomorphic for
Re(s) > 1.

Thus we conclude N (s, o, ® m,,wp) is holomorphic for Re(s) > L. Applying

§.
Zhang’s lemma, we see that N (s, o, ® m,,wp) is non-zero for Re(s) > %

The result on the local intertwining operators together with (%) implies that
[1;%, L(is,m,7;) is holomorphic for Re(s) > 1.

Next, from Ey(s, fs,e) = H;’Evfs(ﬁji(:im)’

has no zeros for Re(s) > 0.

we see that [[*; L(1 + is,m,7;)

By using induction on 4, we see that L(s,m,r;) is holomorphic for Re(s) > 1
and has no zeros for Re(s) > 1. By the functional equation, we conclude that
L(s,m,r;) is entire.

When wqo(7) ~ 7, we cannot conclude that L(s,n,r;) is entire. However, we
can show

Theorem (Kim-Shahidi). Suppose m = 1. Then Lg(s,m,r1) has at most a
simple pole at s = 1. Suppose m > 2. Under the condition Lg(2,7,r3) # 0,
Lg(s,m,r1) has at most a simple pole at s = 1.

Idea of Proof. It follows from the local-global principle: If M (s, ) has a pole at
s = 8o, then the quotient of I(sg,,) is unitary for all v. [If M(s,n) has a pole
at s = sg, then the Eisenstein series has a pole at s = sg, and its residues form
a residual spectrum, that is, a direct summand of L?(G(F)\G(A)). The local
component of the residual spectrum is a quotient of I(s,m,), which is unitary.]

So if we can show that the quotient of I(s, m,) is not unitary at sg, then M (s, )
has no pole at sg. Take 7, to be a spherical representation.

Lemma. I(s,7,) is irreducible for Re(s) > 2.

Proof. J.S. Lishowed that I (s, m,) is irreducible at s = s¢ if and only if []~, L(1—
is, Ty, 7;) has no poles at s = so. Here L(s,m,,m;) = [[;(1~ a;jq; ®)~'. Shahidi
showed that ||, |a;| ™! < gy. So if Re(s) > 2, L(s,m,,7;) has no poles.

Lemma. I(s,m,) is not unitary for Re(s) > 2.

Proof. 1(s,m,) is not unitary for Re(s) >> 0. Unitarity is preserved up to a
point of reducibility. So I(s,m,) is not unitary for Re(s) > 2.

We have proved that M (s, ) is holomorphic for Re(s) > 2. Since A(s, 7, wo)

is non-vanishing, [/~ % is holomorphic for Re(s) > 2. Shahidi showed
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that Lg(s,m,r;) is absolutely convergent for Re(s) > 2. So Lg(s,m,r1) is holo-
morphic for Re(s) > 2. Since M(s,m) has at most a simple pole at s = 1,

| J % has at most a simple pole at s = 1. So Lg(s, 7, 71)Ls(2s,m,72)

has at most a simple pole at s = 1. So under the assumption Lg(2,m,72) # 0,
Ls(s,m, 1) has at most a simple pole at s = 1.

Corollary. Let 7 be a cuspidal representation of GLg(Ar). Then the exterior
cube L-function L(s,m,A\3) (degree 20 L-function) has at most a simple pole at
s=1.

Proof. Apply the theory to M C FEg, where the derived group of M is SLg.

We conclude with a discussion of some observation: Suppose m > 2.
Conjecture. [[~, Ls(1+is,m,r;) has at most a simple pole at s = 0.

Since L(s, 7, r;), i > 3, is holomorphic for Re(s) > 0, this means that only one
of L(s,m,r1), L(s,m,r2) can have a pole at s = 1.

Examples: (1) Consider GL,, x SOapt+1 C SO3(m+n)+1- The L-functions in
the constant term of the Eisenstein series are

L(s,0 x w)L(2s, 0, Sym?).

If L(s,0 x w) has a pole at s = 1, then 0 ~ & and L(s, o, Sym?) is holomorphic at
s = 1 by the conjecture. Since L(s,o x o) = L(s, 0, Sym?)L(s,0,A?), L(s, 0, \?)
has a pole at s = 1. This has been proved by Ginzburg-Rallis-Soudry.

(2) Consider M = GLs C G2 (the maximal Levi subgroup attached to the
long simple root in the exceptional group of type G2). The L-functions in the
constant term of the Eisenstein series are

L(s,m, Sym® @ w;')L(2s,wy).

If L(s,7,Sym® ® w ') has a pole at s = 1, m is monomial and hence w, # 1. If
wy =1, then L(s, 7, Sym3 ® w ') is holomorphic at s = 1 (the result of Tkeda).

Some questions in the Langlands-Shahidi method:
(1) Prove the above conjecture.

(2) Unitarity criterion for I(s,m,) when 7, is a spherical representation. This
will give the location of poles of L(s,7,r;).

(3) Find the criterion for the pole of L(s,m,r1) at s = 1. Goldberg-Shahidi
have been studying the criterion for the pole of the local L-function at s = 0 in
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terms of twisted endoscopy. We want a global analogue. For example, we want
to find a criterion of the pole in terms of some period integrals. For example,
Flicker showed that L(s,o,r4) has a pole at s = 1 precisely when o is GLi(Af)-
distinguished, namely, the central character w, satisfies the condition w,| AX = 1
and there exists a cuspidal function ¢ such that

/ o(h) dh # 0,
GLy (F)Z(AF)\GLk(AF)

where Z is the center of GLyg.

(4) Develop the theory for Kac-Moody groups (infinite-dimensional groups).
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Lecture 3. Functoriality of symmetric powers of cuspidal representa-
tions of GLs.

Let # = ®m, be a cuspidal representation of GLs over a number field F'.
Let Sym™ : GL2(C) — GL;;+1(C) be the mth symmetric power representa-
tion. The local Langlands correspondence, proved by Langlands for archimedean
places, and by Harris-Taylor, Henniart for p-adic places, says that 7, is parametrized
by ¢y : Wg, X SLy(C) — GL2(C). Consider the composition Sym™(¢,) : Wk, X
SL2(C) — GLp41(C). By the local Langlands correspondence, Sym™ (¢, ) is
associated to an irreducible, admissible representation Sym™ (m,) of GL,,1(Fy)-
Let Sym™(7w) = @ Sym™(m,). It is an irreducible, admissible representation of
GLp+1(A).

Langlands functoriality conjecture. Sym™(7) is automorphic.

Theorem. (1) (Gelbart-Jacquet) Sym?(r) is an automorphic representation of
GLj3. It is not cuspidal if and only if m is of dihedral type, i.e., m ~ ™ ® x for

x # 1.

(2) (Kim-Shahidi) Sym3(r) is an automorphic representation of GLy. It is
not cuspidal if and only if © is either of dihedral type, or of tetrahedral type, i.e.,
Sym?(n) is cuspidal and Sym?(m) ~ Sym?(n) ® x for x # 1.

(3) (Kim) Sym*(r) is an automorphic representation of GLs.

(4) (Kim-Shahidi) Sym* (=) is not cuspidal if and only if 7 is either of dihedral
type, or of tetrahedral type, or of octahedral type, i.e., Sym3(w) is cuspidal and
Sym3(n) ~ Sym3(mw) ® x for x # 1.

3.1 Proof of functoriality of Sym?(r).

In order to illustrate our method, let us prove the functoriality of Sym?2(m)
using our method. Let ¢ = Ad : GL2(C) — SO3(C) C GL3(C) be the adjoint
representation. Let m = ®,m, be a cuspidal representation of GL2(C). By the
local Langlands’ correspondence, we have Ad(m) = ®,Ad(m,), irreducible admis-
sible representation of GL3(A). In this case, note that, for a gréssencharacter

X
L(s,m x ) = L(s, Ad(m))L(s,1), L(s, (7 ® x) x &) = L(s, Ad(m) ® x)L(s, x)-

Hence L(s, Ad(m,)®Xy») and y(s, Ad(m,) @ X, ¥y ) are Artin L and vy-factors. Here
L(s, Ad(m)® x) appears in the Langlands-Shahidi method for P = M N C Sp(4),
where M ~ GL; x SLs: Take my to be any irreducible constituent of 7|g La(A)
and consider ¥ = xy ® mg. Then (M, X) gives rise to the fact that L(s, Ad(m) ® x)
is entire if x2 # 1. We recall

Converse theorem. Suppose II = ®I1, is an irreducible, admissible represen-
tation of GLy such that wn = Qwr, s a grossencharacter. Let S be a finite set
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of finite places and let T°(m) be the set of all cuspidal representations of GLy,
that are unramified at S. Suppose L(s, o xII) is nice (entire, functional equation,
bounded in vertical strips) for allo € TS(m)®x, m =1,...,N — 2, where x is a
grossencharacter which is highly ramified at S. Then there exists an automorphic
representation II' of GLy such that TI, ~ 11, forv ¢ S.

Apply the converse theorem twice to Ad(w) = ®,Ad(n,), and S1 = {v1},
Sy = {v2}, where vy,vy are any finite places. Then we obtain II;,IIs auto-
morphic representations of GL3(A) such that 11y, ~ Ad(w,) for all v # vy, and
Iy, ~ Ad(m,) for all v # vy. So by the strong multiplicity one, ITy ~ Iy ~ Ad(n).
Therefore Ad(m) is an automorphic representation. By the classification of auto-
morphic representations of GL,,, Ad(m) is equivalent to a subquotient of

Indo,|det|™ ® --- @ o|det|™,

where 0;’s are (unitary) cuspidal representations of GL,,, and r; € R.

We use the weak Ramanujan property: Let m = ®m, be a cuspidal represen-
tation of GL,,, and m, is spherical with the Satake parameter diag(ayy, ..., Qny)-
We say 7 satisfies the weak Ramanujan property if given € > 0, there exists T,
a density zero set such that max;{|a,|, || 71} < ¢S for v ¢ T..

Lemma. Cuspidal representations of G Ly, G L3 satisfy the weak Ramanujan prop-
erty.

Since 7 satisfies the weak Ramanujan, so does Ad(w). Hencery = --- =1, = 0.
From the relation L(s, (7 ® x) x 7) = L(s, Ad(7) ® x)L(s, x), the left hand side
has a pole at s = 1 if and only if 7 ® x ~ =, i.e., 7 is monomial. Then the
right hand side has a pole. So Ad(m) ~ x H n’, where n’ is an automorphic
representation of GLy. Hence Ad(7) is not cuspidal if and only if 7 is of dihedral

type.

3.2 Proof of functoriality of Sym3(x).

This is obtained indirectly from the functorial product associated with the
tensor product map

Let 7,72 be cuspidal representations of GLs, GL3, resp. For each place v, m;,,
i = 1,2, are parametrized by ¢;, : Wg, X SLy(C) — GL;11(C), i = 1,2. Then
D10 ® P2y : Wg, x SLa(C) — GLg(C). By the local Langlands correspondence,
P10 ® @2, gives rise to an irreducible, admissible representation 7y, X g, of
GLg(Fy). Let my Ry = ®(m1y K 7ma,). It is an irreducible, admissible represen-
tation of GLg(A).



18 HENRY H. KIM
Theorem (Kim-Shahidi). 7 K7 is automorphic.

Let 7 be a cuspidal representation of G Ly, and let Ad() be the adjoint square,
i.e., Ad(m) = Sym?(r)®w_ !, where w; is the central character. Then 71X Ad(7) =
(Sym3(m) ® w ') B . Here M is the isobaric sum, and it denotes the unitary
induction Indgfz)(GL2 (Sym3(r) @ wl) @ .

Proof of the theorem. We apply the converse theorem to m; X 7m5. Let S be a
finite set of finite places such that my,, 79, are spherical for v ¢ S, v < co. We
need the triple product L-functions

L(s,0 x (m R my)) = L(s,0 X T X m2),

where ¢ is a cuspidal representation of GL,,, m = 1,2,3,4. These are available
from Langlands-Shahidi method:

(1) m = 1: Rankin-Selberg L-function of GLs X GL3
(2) m = 2: D5 — 2 case. Use Spin(10).

(3) m =3: Eg — 1 case. Use simply connected Fjg.
(4) m =4: E7 — 1 case. Use simply connected Ex.

Functional equation: due to Shahidi (1990)
Bounded in vertical strips: due to Gelbart and Shahidi (2001)
Entire: trick to use x which is highly ramified at one finite place

By applying the converse theorem, we obtain an automorphic representation
IT = ®II, of GLg such that II, ~ m, X my, for v ¢ S. By classification of
automorphic representations of GLy (due to Jacquet-Shalika), II is equivalent
to a subquotient of Ind|det|™ o1 ® - -+ ® |det|" o, where 71, ...,7x € R and 0;’s
are cuspidal representations of GL,,.

We need: r{ =--- =17, = 0.

We use the weak Ramanujan property. Let diag(ai,B1),diag(az,B32,72) be
Satake parameters for my,, m2,, resp. Then the Satake parameter of II, is
diag(aiag, a1 P2, a17y2, frae, B102, B1y2). This implies that IT satisfies the weak
Ramanujan property. Hence ry = --- =rp = 0.

Proving that I, ~ m, X my, for v € S requires extra work using base change.
The most difficult case is when v|2, 7, is an extraordinary supercuspidal rep-
resentation of GLy(F,), and s, is a supercuspidal representation of GLs(F,)
attached to a non-normal cubic extension K/F,, namely, 7, is associated to
1 nd%ﬁ“ X, Where x is a character of Wx. This has been done in the appendix by
Bushnell and Henniart.

3.8 Proof of functoriality of Sym*(x).
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This is obtained indirectly from the functoriality of the exterior square of
GL4: Let 7 be a cuspidal representation of GL4, and let A? : GLy(C) —
GLg(C) be the map given by the exterior square. We can define, by the local
Langlands correspondence, the irreducible admissible representation A27r = ® A2
Ty of GL6 (A)

Theorem (Kim). Let T be a set of places such that v|2,3 and 7, is a supercusp-
idal representation of GL4(F,). Then there exists an automorphic representation
I = ®I, of GLg such that I, ~ A’m, forv ¢ T.

Let 7 be a cuspidal representation of GLs. Then we can prove

A2(Sym? (1) @ w ') = (Sym*(7) @ wy ) B wy.

Proof of the theorem. We apply the converse theorem to A%w. We need the
L-functions
L(s,0 x A’1t) = L(s,0 ® T, pm ® N2py),

where p,, : GL,(C) — GL,,,(C) is the standard representation and o is a
cuspidal representation of GL,,, m =1,2,3,4.

These L-functions show up in D,, — 3 case for n = 4,5,6,7. The reason there
is an exceptional set 1" is because we could not prove the identity

L(s, 10 ® A*my) = L(s, 0, A* @ 1,),
(**) ’Y(Sﬂ?v ® /\27Tv,¢v) = ’7(8’7‘-’07/\2 ®nva¢v)7
for v € T. The left hand sides are defined by Rankin-Selberg method. The right

hand sides are defined by Langlands-Shahidi method as normalizing factors of
intertwining operators.

It is conjectured that when 7, is highly ramified, we have the following
Stability of vy-factors. Let mi,,m2, be two irreducible admissible representa-

tions of GL4(F,) with the same central character. Then for every highly ramified
character n,,

L(s,T10, A> @ 1) = L(8, 29, A @ 1) = 1,
7(87 7‘-1’07 /\2 ® T’U’d)v) = 7(877‘-2’07 /\2 ® "7va¢v)-

Since it is not available, we have to use the descent method of Ramakrishnan.
Namely, we first look at a good case when T' is empty. When T is not empty, we
use the observation of Henniart that a supercuspidal representation of GL,,(F})
becomes a principal series after a solvable base change.
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Theorem (Ramakrishnan). Fizn,p € N with p prime. Let F' a number field,
{K;|j € N} a family of cyclic extensions of F' with [K; : F| = p, and for each
Jj € N, m; a cuspidal automorphic representation of GLn(Ak;). Suppose that,
given j € N,

(ﬂ-j)KjKT = (ﬂ-?")KjKra

for almost all r € N. Then there exists a unique cuspidal automorphic represen-
tation ™ of GL,(Ar) such that

(m)k; ~ 7,
for all but a finite number of j.

For the functoriality of the symmetric fourth, we can prove (xx) directly and
hence we do not need the descent method of Ramakrishnan.
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Lecture 4. Applications.

4.1 Properties of symmetric power L-functions.

For simplicity, let m be a cuspidal representation of G Ly with the trivial central
character and suppose that Sym?(r) is cuspidal. Then we have

(1) L(s,m, Sym™), m < 9, has a meromorphic continuation to all of C and
satisfies a functional equation.
(2) L(s,m, Sym™), m < 8, is invertible for Re(s) > 1 (no poles and no zeros).
(3) L(s,my, Sym?) is holomorphic for Re(s) > 1 for any v. If 7, is spherical
1 1
with diag(a,,By) as the Satake parameter, then g, ° < |ayl, |Bv] < 43 -
(4) L(s,m, Sym?), L(s,n, Sym*) are entire.
It is conjectured that the multiplicity of poles of L(s,7,Sym™) at s = 1

determines w. For example, if 7 is a cuspidal representation of icosahedral type,
L(s,m, Sym™) has a simple pole at s = 1 when m = 12.

Let us show how the properties of L(s, w, Sym?®) are proved in order to indicate
the limitation of our method: Consider the case Eg — 2. Let M be a maximal
Levi subgroup in the exceptional group of type Eg whose derived group Mp
is SLy x SLs. Let m;, i = 1,2, be cuspidal representations of GL4(A) and
GLs(A) with central characters w;, i = 1,2, resp. Let 7ri0, , = 1,2, be irreducible
constituents of m1|sz,(a) and m2|gr;(a), Tesp. Then ¥ = wiw ® 9 ® Mg can be
considered as a cuspidal representation of M(A). Applying Langlands-Shahidi
method, we then get the L-function L(s, w1 ®m2, pa®A%ps) as our first L-function.
In fact, there are five L-functions in the constant term of the Eisenstein series;
namely

( ) = Ls(s,m ® w2, ps ® A’ps);

( ) = Ls(s,m ® (2 ® w), A’ps ® ps);
LS(S,E r3) = Lg(s,T1 X (T2 @ wiw2));

( ) = Ls(s, o, A% ps @ wiw3);

( ) = Ls(s, T ® wiw3).
Each of the L-functions, especially, Lg(s, 3, 1) has a meromorphic continuation
and satisfies a standard functional equation.

We apply the above to m; = A3(n) and mo = Sym?*(r). By standard calcula-
tions, we have
Ls(s,m1 ® ma, ps @ N2ps) = Ls(s,m, Sym®)Ls(s, 7, Sym” ® wy)Ls(s, T, Sym® ® w?)?

Ls(s, Sym®(m) @ w3)?Ls(s, 7 @ wi).

Meromorphic continuation and functional equation of Lg(s, 7w, Sym?®) now follow
from those of Lg(s, T ® 2, ps @ A%ps).
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The group of type Ejg is the largest finite dimensional exceptional group. The
groups of type E,, n > 9, are not finite dimensional, and they are called Kac-
Moody groups.

4.2 Refined Ramanugjan and Selberg bounds.

Let 7 = ®m, be a cuspidal automorphic representation for GL2(Ag). For p
a prime at which 7, is spherical, let diag(ay,3,) be the corresponding Satake
parameter. Let Sym?(r) be the symmetric fourth, the cuspidal representation
of GLs. (We assume that it is cuspidal since if not, 7 is associated to a Galois
representation, and it satisfies the Ramanujan conjecture.) Then from the fact
that L(s, Sym?(m), Sym?) is absolutely convergent for Re(s) > 1, we can show
that

_

Theorem (Kim-Sarnak). p=si < |a,| < pei. Let \(') be the smallest
(nonzero) eigenvalue of the Laplacian on T\H, where T is a congruence subgroup
of SLy(Z). Then

975

M (T) > —— ~0.238...
1 )_4096 0.238

4.8 Density of tempered places.

Let 7 be a cuspidal representation of GLy. Let S(7) be the set of places where
Ty is tempered. Ramanujan conjecture predicts that S(7) is the set of all places.
Ramakrishnan proved, using the functoriality of symmetric square, that S(7) has
lower Dirichlet density> %. By using the functoriality of symmetric cube and
symmetric fourth, we can show

34
o(S > .
8(S(m) = o
Here §(S) is the lower Dirichlet density, defined by
doves
4(S) =1 —wee Y
6(5) =lim, ,;, — log(s — 1)

4.4 Special case of Sato-Tate conjecture.

Let # = ®m, be a cuspidal representation of GLs with the trivial central
character. We also assume the Ramanujan conjecture. Let diag(a,,3,) be the
Satake parameter for the spherical m,. Let a,(7) = ay, + B,. Since |a,(7)| < 2,
write a,(7) = 2cosf,, 0 < 6, < w. Sato and Tate conjectured that 6, is
distributed in the following way:

9 b
#{v:qg, <z,0, € (a,b)} ~ (;/ sin20d0> wr(z),

as ¢ — oo. Here mp(z) = #{v: ¢ <z} ~ ;=. The weaker version of Sato-Tate
conjecture claims that the set #{v : 6, € (a,b)} has positive lower density for
any a < b.
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Theorem. For every € > 0, there exist TT, T~ of positive lower density such
that a,(m) > 2cos 22 — ¢ for v € TT and ay(m) < —2cos 2T + € forve T~.

Here 2cos 27 = 1.68...

4.5 Weak Ramanujan property.

We can prove that cuspidal representations of G L, satisfy the weak Ramanujan
property. Let 7 = ®,7, be a cuspidal representation of GL4(A). Let 7, be an
unramified component with the trace a,, i.e., a, = a3 + as + az + a4, where the
Satake parameter of 7, is given by diag(ai, a2, as,as4). Then given € > 0, the
set of places where |a,| > ¢ has density zero.

Note that at a place where 7, is non-tempered, the trace a, has one of the
following three forms: Here wuq,ug,us are complex numbers with absolute value
one. We suppress the dependence of all the factors on v for the simplicity of
notation, except a,.

S1; Gy = u1q% + u2q® + U194~ * + u2q™ %, where 0 < a < %;

S9; Gy = u1q% + ug + u3z +u1q~ %, where 0 < a < %;

S3; ay = u1q® + u29® 4+ u1q”* + ugq™*?, where 0 < as < a1 < %
Fix € > 0. Then inside Ss, the set of places where |a,| > ¢ has density zero. It
means the set of places where a > € has density zero.

Suppose S; has a subset S’ of positive density where ¢* > ¢¢ for v € S’. Then
consider the lift A%27. For v € S1, the trace of A%, has the form

by = u1u2q®® + uf + urus + uj + uruag .
Then |b,| > ¢¢ for v € S’. This is a contradiction.

Suppose S3 has a subset S’ of positive density where ¢?* > ¢¢ for v € S’. Then
consider the lift A2, For v € S3, the trace of A?m, has the form

—a1—a2

by = uru2q® T* + uguag®™ "% 4 uf +uj + uruag T + ujuag

Then |b,| > ¢¢ for v € S’. This is a contradiction.

4.6 Hypothesis H.

Let 7 = ® 7, be a cuspidal automorphic representation for GL,,(Ag). For
p a prime at which 7, is spherical, let diag(aip, ..., mp) be the corresponding
Satake parameter. For a positive integer k, let a,(p*) = of ,+--- 4+ af, ,. Then
Rudnick and Sarnak made the following

Hypothesis H. For any fired k > 2,

1 2 - k\|2
Z(ng) |Z (p®)] < oo,
. p
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It has an important application to distribution of zeros of L-functions. Rudnick
and Sarnak proved Hypothesis H for m = 2,3. Using the functoriality of the
exterior square of GLy4, we can prove Hypothesis H for m = 4.

Consider the exterior square A2r. There exists an automorphic representation
II of GLg(Ag) such that II, ~ A?m, except possibly for p = 2,3, and II is an
isobaric sum of (unitary) cuspidal representations of GL,,. If m, is non-tempered,
the Satake parameter of A%m, is as follows:

S1 ¢ diag(uyuap®®, uiug, uf, u3, uitg, uugp™>*)
Sy : diag(uyuzp®, urusp®, uf, ugus, uyugp™®, uruzp—*)
S3 @ diag(uiuop® 92 uiusp® 2 uf ul, ujugpT T2 ugugp T4 T2).
Hence by applying Luo-Rudnick-Sarnak to II, we see that if p € Sy, 2a < 1
2

1fp652,a§1—ﬁ,1fp653,0<a2<a1<1—ﬁanda1+az ——ﬁ

37’

prESl,agi— Hence

1
74"

lo 2| a, (p*)|?
Z( gp)°lax(p”)|

< 0.
pk

PES1

If p € So, we apply the same technique in Rudnick-Sarnak. Namely, note that
|lu1p® 4+ ug + ug + u1p~*| > p* + p~* — 2. Hence

o p| + |2 p| + oz p| + |aap| <larp + o2y +azp + aapl + 4.
Hence

lax(P*)|* << |ax(p)**.
a1

Since |ax(p)| << pz~17,

3 (log p)?|ax(p << 3 (log p)?|ax(p)|? -

k 1+ (k—1)
PES2 p PES2 7

Since k > 1, we apply the fact that L(s,m X ) converges absolutely for Res > 1,
and hence ) 12
Z (log p)*|ax (p")]

pk

< 0.
pES2

pr € S3, note that 2ay < 5 — . Hence ay < = 4. Note also that |uj(p® +

p~ ) + uz(p®? +p~*2)| > pM +p a — (p +p_a2) Hence
o1 p| + |z p| + oz p| + |aap| < a1y +azp + a3y + agp| + 2p*

Hence

|ax(P%)? << |ax (p)[?* + p*Fez.

We again obtain

l 2 - k\|2
Z (log p) IZ (p*)| < o
p€ES3 p



