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The main reference is [1].

1. Lecture One: What are L-functions?

An L-function is a very special type of meromorphic functions of one complex variable. On

the surface it is not clear why the L-functions play decisive roles.

An L-function is associated to the set A; arithmetic-geometric objects such as Galois groups,

elliptic curves, and Shimura varieties. It is also associated to the set B; automorphic forms and

representations. Langlands conjecture is that the set B contains the set A. The L-functions in

the set B are called automorphic L-functions. Special case of such relationship for elliptic curves

is called Taniyama-Shimura-Wiles theorem, i.e., elliptic curves over Q are modular.

Over Q, an L-function which is associated to an object F takes the form of Euler product

over all primes p, L(s, F ) =
∏
pLp(s, F ), Lp(s, F ) =

∏m
j=1(1−αj(p)p−s)−1 for almost all primes,

where αj(p) ∈ C. As a function of s ∈ C, this product converges absolutely for Re(s) >> 0 and

we can multiply out to get a series L(s, F ) =
∑
a(n)n−s.

Examples: (1) Riemann zeta function ζ(s) =
∏
p(1 − p−s)−1 =

∑∞
n=1 n

−s. It was Riemann

who introduced his zeta function in order to study the distribution of prime numbers: The prime

number theorem says that π(x) =
∑

p≤x 1 ∼ x
log x . It is equivalent to the fact that ζ(1 + it) 6= 0

for t ∈ R. A better zero free region gives a better error term. Riemann hypothesis is ζ(s) 6= 0 if

Re(s) > 1
2 . It gives π(x) = Li(x) +O(

√
x log x), where Li(x) =

∫ x
2

dt
log t .

(2) Dirichlet L-function L(s, χ) =
∏
p(1−χ(p)p−s)−1 =

∑∞
n=1 χ(n)n−s, where χ is a character

of (Z/qZ)×.

Dirichlet’s theorem on arithmetic progression says that there are infinitely many primes in the

arithmetic progression an+b, where (a, b) = 1, n = 1, 2, ... It comes from the fact that L(1, χ) 6= 0

for a Dirichlet character χ mod a. A better zero free region gives rise to a better error term.
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(3) E : y2 = x3 + ax + b, a, b ∈ Z. Let NE(p) be the number of solutions mod p. Let

aE(p) = p − NE(p). Then Lp(s, E) = (1 − aE(p)p−s + p1−2s)−1 for p non-singular. (Without

normalization: In order to have a functional equation of the form s 7−→ 1 − s, we need to take

Lp(s, E) = (1 − aE(p)p−
1
2
−s + p−2s)−1.)

More explicitly, let E : y2 = x3 − 4x2 + 16. Then we have some numerical calculations (due to

Silverman):

p 2 3 5 7 11 13 17 19 23

NE(p) 2 4 4 9 10 9 19 19 24

aE(p) 0 −1 1 −2 1 4 −2 0 −1

Let F = q
∏∞
k=1[(1 − qk)(1 − q11k)]2 =

∑∞
n=1 bnq

n. Here F is a modular form of weight 2.

Consider the L-function L(s, F ) =
∑∞

n=1 bnn
−s. Then

L(s, F ) =
∏

p 6=11

(1− bpp
−s + p1−2s)−1(1 − b1111−s)−1.

We have aE(p) = bp for all p 6= 2.

(4) Artin L-functions. Let L/K be a Galois extension and let P (L/K) be the set of prime

ideals in K which split completely in L. Fact P (L/K) determines L completely.

The goal of class field theory is to describe the Galois extension L in terms of data in K,

namely, determine P (L/K) in terms of data in K. When L/K is abelian, the answer is given

completely by the class field theory. For example, P (Q(ζm)/Q) = {p ≡ 1 (mod m)}, where ζm is

a primitive mth roots of unity. But when L/K is not abelian, not much is known.

Example 1 (cf. [13]). Consider f(x) = x3 − x − 1. Here the discriminant is -23. Let L be

the splitting field of f . Then Gal(L/Q) ' S3. If p is unramified, f(x) ≡ 0 (mod p) has 0,1,3

solutions. Then P (L/Q) = {p| f(x) ≡ 0 (mod p) has 3 solutions.}. By computer calculation, we

see that P (L/Q) = {59, 101, 167, 173, ...}. On the other hand, f(x) ≡ 0 (mod p) has 0 solutions

when p = 2, 3, 13, 29, 31, 41, ... It is hard to see the pattern. The pattern comes from modular

forms. Let ρ : S3 −→ GL2(C) be the 2-dimensional representation of S3. Then we have the Artin

L-function L(s, ρ, L/Q). It is given by the Euler product

L(s, ρ, L/Q) =
∏

p

(1− app
−s +

( p
23

)
p−2s)−1,

where ap = Nf(p) − 1, and Nf(p) is the number of solutions for f(x) ≡ 0 (mod p). Here

L(s, ρ, L/Q) = ζE(s)
ζ(s)

, where E = Q(α), and α is a root of f(x). This comes from the fact that

IndS3
H 1 = 1 + ρ. Here H is the Galois group of L/E, and H ' Z/2Z.
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Theorem 1.1 (Langlands functoriality). (1) L(s, ρ, L/Q) is the L-function attached to a mod-

ular form of weight 1, level 23, with respect to the character ε(p) =
( p

23

)
. More precisely,

L(s, ρ, L/Q) = L(s, F ),

F = q

∞∏

k=1

(1− qk)(1− q23k) =

∞∑

n=1

anq
n, q = e2πiτ , τ = x + iy

L(s, F ) =
∏

p

(1− app
−s +

( p
23

)
p−2s)−1.

(2) P (L/Q) = {p| ap = 2}.

Example 2. f(x) = x5 − x − 1. The Galois group is S5. It is not solvable. Let L be the

splitting field of f and E = Q(α), where α is a root of f . Let H = Gal(L/E). Then H ' S4, and

IndS5
H 1 = 1 + ρ, where ρ : S5 −→ GL4(C) be a 4-dimensional representation. We have the Artin

L-function L(s, ρ, L/Q) = ζE(s)
ζ(s) . The strong Artin conjecture says that there exists a cuspidal

representation π of GL4/Q such that L(s, ρ, L/Q) = L(s, π). It has been proved recently by

Khare and others [3].

Conjecture 1.2 (Langlands functoriality conjecture). There exists a cuspidal representation

π = ⊗πp of GL4 such that L(s, ρ, L/Q) = L(s, π), and P (L/Q) = {p| Satake parameter of πp is

diag(1, 1, 1, 1)}.

A weaker assertion is the Artin conjecture: L(s, ρ, L/Q) is entire.

We only know that L(s, ρ, L/Q) has meromorphic continuation to all of C and satisfies a

functional equation.

More generally, Langlands conjectured that given an irreducible representation ρ : Gal(Q/Q) −→
GLn(C), there exists a cuspidal representation π = ⊗πp of GLn such that ρ(Frobp) =Satake pa-

rameter of πp. It is usually referred to as the strong Artin conjecture.

Much effort has been made when n = 2. Let ρ̄ : Gal(Q/Q) −→ PGL2(C) ' SO3(C). Then

Im(ρ̄) is D2n (dihedral), A4 (tetrahedral), S4 (octahedral), A5 (icosahedral). The first three

groups are solvable. It is a theorem of Langlands and Tunnell that for the case of A4, S4, the

strong Artin conjecture is true, and it has been used by Andrew Wiles in his proof of Fermat’s

last theorem.

Cuspidal representations generalize classical modular forms (holomorphic and Maass forms).

They can be understood as “direct summands” of the right regular representation of G(A) on the

Hilbert space L2(G(F )\G(A)), where A is the ring of adeles. If π is a cuspidal representation,
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then we have a tensor product decomposition π = ⊗πv , where v runs through all places of F ;

πv is an irreducible, unitary representation of G(Fv) for all v; πv is spherical for almost all v,

namely, it has the Satake parameter (semi-simple conjugacy class) {tv} in LG (the L-group of

G).

When G = GL2, F = Q, there are two types of cuspidal representations: First, cuspidal

representations attached to holomorphic cusp forms of weight k with respect to a congruence

subgroup of SL2(Z); π = πf , where f(τ) =
∑∞

n=1 ann
k−1

2 e2πinτ , τ = x+ iy. Then πf = ⊗πp, and

the Satake parameter of πp is diag(αp, βp), where a1 = 1, ap = αp + βp.

Second, cuspidal representations attached to Maass cusp forms. They are eigenfunctions of

the Laplacian; y2
(
∂2

∂x2 + ∂2

∂y2

)
f + ( 1

4 − t2)f = 0, where t ∈ iR or t ∈ R, 0 < t < 1
2 . Then

f(τ) =
∑

n6=0 an|n|−
1
2W (nτ), where W (τ) = y

1
2Kt(2πy)e

2πix and Kt is the K-Bessel function.

Conjecture 1.3 (Ramanujan conjecture). |αp| = |βp| = 1.

Conjecture 1.4 (Selberg conjecture). t ∈ iR, or 1
4 − t2 ≥ 1

4 .

Theorem 1.5 (Deligne, 1973)). Ramanujan conjecture is true for holomorphic cusp forms.

(5) Symmetric power L-functions. Let Symm : GL2(C) −→ GLm+1(C) be the mth symmetric

power representation on the space of homogeneous polynomials of 2 variables of degree m. For

g ∈ GL2(C), g · f(x, y) = f(X, Y ), where

(
X

Y

)
= g

(
x

y

)
and f is a homogeneous polynomial of

degree m.

Let π = ⊗πp be a cuspidal representation of GL2(A) such that diag(αp, βp) be the Satake

parameter of πp for almost all p. Then

L(s, πp, Sym
m) =

m∏

j=0

(1 − αm−j
p βjpp

−s)−1.

The L-function L(s, π, Symm) was introduced by Langlands to solve Ramanujan and Sato-Tate

conjecture. For example, if we know that L(s, π, Symm) is absolutely convergent for Re(s) > 1

for all m, then |αmp | ≤ p, |βmp | ≤ p for all m. This implies that |αp| ≤ p
1
m , |βp| ≤ p

1
m for all m.

Since |αpβp| = 1, we have |αp| = |βp| = 1.

Sato-Tate conjecture (now a theorem due to Taylor and et al): Let π be a cuspidal represen-

tation with the trivial central character. Let ap = αp + α−1
p = 2 cos θp, 0 ≤ θp ≤ π. Then for
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0 ≤ a < b ≤ π,

1

π(x)
#{p ≤ x : θp ∈ (a, b)} → 2

π

∫ b

a

sin2 dθ, x→ ∞.

Serre showed that the analytic continuation of L(s, π, Symm) and non-vanishing for Re(s) ≥ 1

imply Sato-Tate conjecture. Now it ia a theorem [11] that L(s, π, Symm) is modular for π coming

from holomorphic modular forms.

2. Lecture Two: How do we study L-functions?

Let π = ⊗πv be a cuspidal representation ofG(A), whereG is a split reductive group. Let LG be

the L-group ofG. Let r : LG −→ GLN(C) be a finite dimensional representation of LG. For v /∈ S,

πv is spherical and it gives rise to a Satake parameter (semi-simple conjugacy class) {tv}, tv ∈ LG.

Form the local L-function L(s, πv, r) = det(I − r(tv)q
−s
v )−1. Let LS(s, π, r) =

∏
v/∈S L(s, πv, r).

Central problems: (1) L(s, F ) has a meromorphic continuation to all of C and satisfies a

function equation of the form: Let Λ(s, F ) = L(s, F )× (some γ-factors and factors at bad places).

Then Λ(s, F ) = ε(s, F )Λ(1− s, F ′), where F ′ is an object related to F such as a contragredient

representation. For example, Λ(s) = ζ(s)π−
s
2 Γ( s2 ) = Λ(1− s).

(2) Λ(s, F ) is bounded in vertical strips.

(3) Grand Riemann Hypothesis; non-trivial zeros of L(s, F ) are all on Re(s) = 1
2 .

(4) Generalized Ramanujan conjecture: |αj(p)| = 1.

(5) Birch, Swinnerton-Dyer conjecture: Let E/Q be an elliptic curve. The order of vanishing

of L(s, E) at s = 1 (center of symmetry) is equal to the rank of the group of rational points on

E.

(6) Other problems such as Siegel zeros (real zeros close to 1). For example, the formula for

L(1, χ) contains the class number of K/Q, where K is a quadratic extension, and χ quadratic

character of K/Q. The absence of Siegel zeros gives strong result on class number. For example,

a Siegel zero for K = Q(
√
−D), D > 0, is a zero between (1 − a

logD , 1). Absence of Siegel zeros

implies that h(D) �
√
D

logD with effective constant.

Here (3) and (5) are two of seven one million dollar prize problems of Clay Math. Institute.

Here even meromorphic continuation is not obvious. For example, it is clear that
∏
p≡1 (mod 4)(1−

p−s)−1 converges for Re(s) > 1. We can continue up to Re(s) > 0. But it is known that it has

no meromorphic continuation to all of C. It has a natural boundary at Re(s) = 0 (Kurokawa).

There are two ways of studying automorphic L-functions:
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(1) method of Rankin-Selberg (integral representations); expresses L-functions as integrals of

Eisenstein series, theta functions, etc. For example, Riemann proved that

π−
s
2 Γ(

s

2
)ζ(s) =

∫ ∞

0

x
s
2
1

2
(θ(x)− 1)

dx

x
, θ(x) =

∞∑

−∞
e−n

2πx.

The Poisson summation formula gives rise to the functional equation of the theta function,

θ(x−1) = x
1
2 θ(x), and the functional equation of the Riemann zeta function follows.

Let π, π′ be cuspidal representations of GLn, and E(s, g) be the Eisenstein series of GLn

associated with maximal parabolic subgroup with the Levi subgroup GLn−1 ×GL1. Let φ, φ′ be

automorphic forms in the space of π, π′, resp. Then

I(s, φ, φ′) =

∫

ZnGLn(Q)\GLn(A)
φ(g)φ′(g)E(s, g) dg = L(s, π× π′) × bad factor.

We can study L(s, π × π′) using this integral representation.

(2) Langlands-Shahidi method; uses Eisenstein series attached to maximal parabolic subgroups.

Let P = MN be a maximal parabolic subgroup of G. Let π be a cuspidal representation of

M(A). Then we can form an induced representation, for s ∈ C,

I(s, π) = IndGPπ ⊗ exp(sα̃, HP ( )),

where α̃ is the fundamental weight corresponding to α, and α is a simple root such that P is

associated to ∆−{α}. (∆ is the set of simple roots) For example, if P = MN ⊂ Sp2n, M ' GLn

(Siegel parabolic subgroup), then I(s, π) = IndGPπ ⊗ |det|s.
Given fs ∈ I(s, π), we define an Eisenstein series

E(s, fs, g) =
∑

γ∈P (F )\G(F )

fs(γg).

Let E0(s, fs, g) =
∫
N(F )\N(A)E(s, fs, ng) dn. It is called constant term. If P is self-conjugate,

i.e., w0(∆ − {α}) = ∆ − {α} (most cases),

E0(s, fs, g) = fs(g) +M(s, π)fs(g), M(s, π)fs(g) =

∫

N(A)
fs(w

−1
0 ng) dn,

where w0 is a Weyl group element. M(s, π) is called global intertwining operator from I(s, π) to

I(−s, w0(π)).

Langlands [10] proved that the poles of E(s, fs, g) and M(s, π) are the same and they have

meromorphic continuation to all of C and satisfy a functional equation E(−s,M(s, π)fs, g) =

E(s, fs, g).
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Let fs = ⊗fv and I(s, π) = ⊗I(s, πv). Then M(s, π) = ⊗A(s, πv, w0), where

A(s, πv, w0)fv(g) =

∫

N(Fv)
fv(w

−1
0 ng) dn.

It is called local intertwining operator. For almost all v, fv is the unique Kv-fixed vector in

I(s, πv) such that fv(e) = 1. Then Langlands proved [9]

A(s, πv, w0)fv =

m∏

i=1

L(is, πv, ri)

L(1 + is, πv, ri)
f̃v ,

[Gindikin-Karpelevich formula], where f̃v is the unique Kv-fixed vector in I(−s, w0(πv)) and ri

is certain irreducible finite-dimensional representation of LM . Hence

M(s, π) =

m∏

i=1

LS(is, π, ri)

LS(1 + is, π, ri)
⊗v/∈S f̃v ⊗⊗v∈SA(s, πv, w0)fv.

We can show that for i > 1, L(s, π, ri) = L(s, π′, r′1) for some π′ on M ′ ⊂ G′. By induction on i,

this gives a meromorphic continuation of LS(s, π, ri) for each i. But it does not give the desired

functional equation.

At the suggestion of Langlands, Shahidi [14] calculated ψ-Fourier coefficients of E(s, fs, g)

for globally generic cuspidal representations, where ψ is a generic character of U . Here U is

a maximal unipotent subgroup such that B = TU is a Borel subgroup. Then ψM = ψ|UM

is a generic character of UM = U ∩ M . We say that π = ⊗πv is ψM -globally generic if
∫
UM (F )\UM(A) ϕ(ug)ψM(u)du 6= 0 for a cuspidal function ϕ in the space of π. This implies that

each πv is locally generic, i.e., has a Whittaker model. If λψv(s, πv) is the Whittaker functional

for the space of I(s, πv), then by the uniqueness of Whittaker functional up to a constant,

λψv (s, πv) = Cψv (s, πv, w0)λψv(−s, w0(πv))A(s, πv, w0),

for some constant Cψv (s, πv, w0) ∈ C.

Consider ψ-Fourier coefficient of Eisenstein series

Eψ(s, fs, g) =

∫

U (F )\U (A)
E(s, fs, ug)ψ(u)du.

Then Shahidi showed that

Eψ(s, fs, e) =

∏
v∈SWv(ev)∏m

i=1 LS(1 + is, π, ri)
, Wv(ev) = λψv(s, πv)(fv).
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Functional equation of Eisenstein series implies

m∏

i=1

Ls(is, π, ri) =
∏

v∈S
Cψv (s, πv, w0)

m∏

i=1

LS(1 − is, π, r̃i).

Induction on i and detailed analysis of Cψv (s, πv, w0) lead to the definition of local factors

L(s, πv, ri), ε(s, πv, ri, ψv) for v ∈ S, and the functional equation L(s, π, ri) = ε(s, π, ri)L(1 −
s, π, r̃i) (Shahidi 1990).

But it had been thought that the location of poles is hard to obtain from Langlands-Shahidi

method. Things changed by using spectral theory:

Theorem 2.1 (Langlands’ Lemma). [6] Consider the residual spectrum L2 = L2
res(G(F )\G(A))(M,π).

• L2 = {0} unless w0π ' π.

• L2 is spanned by the residues of E(s, fs, g) for s > 0.

• Suppose E(s, fs, g) has a pole at s = s0. Then L2 = {⊗vJ(s, πv)}, where J(s, πv) is the

image of N (s, πv, w0), the normalized local intertwining operator, namely,

A(s, πv, w0) =

m∏

i=1

L(is, πv, ri)

L(1 + is, πv, ri)ε(is, πv, ri)
N (s, πv, w0).

Then

M(s, π) =

m∏

i=1

L(is, π, ri)

L(1 + is, π, ri)ε(is, π, ri)
⊗v N (s, πv, w0).

(1) and (2) imply that M(s, π) is holomorphic for s > 0 unless w0π ' π.

Trick: w0(π ⊗ χ) 6' π ⊗ χ if χ is a grössencharacter which is highly ramified at one finite place.

We denote π ⊗ χ by π. Then M(s, π) is holomorphic for s > 0.

We have to show that each local operator N (s, πv, w0) is holomorphic and non-vanishing for

Re(s) ≥ 1
2 . This requires the study of representations of p-adic groups. The main ingredients are

the following standard module conjecture and classification of discrete series representations.

Theorem 2.2 (Standard module conjecture). Given a non-tempered generic representations πv,

there is a tempered data π0 and a complex parameter Λ0 which is in the corresponding positive

Weyl chamber so that πv = IM0(Λ0, π0) = IndMM0
(π0 ⊗ q

<Λ0,H
M
P0

( )>
v ).

According to Langlands, any non-tempered representation πv can be written as a Langlands’

quotient, namely, the quotient of IM0(Λ0, π0). The above conjecture claims that if πv is generic,

πv is IM0(Λ0, π0) itself.
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Theorem 2.3. The local normalized intertwining operators N (s, πv, w0) are holomorphic and

non-vanishing for Re(s) ≥ 1
2 .

2.1. Langlands’ functoriality conjecture. Let H,G be two reductive groups. To each ho-

momorphism of L-groups, r : LH −→ LG, there is associated a lift (transfer) of automorphic

representations of H to automorphic representations of G which satisfy canonical properties.

Example 1. H = {e}, G = GLn over Q. Then LH = Gal(Q/Q) and LG = GLn(C). Then

Langlands functoriality conjecture is the strong Artin conjecture.

Example 2. H = GL2, G = GLm+1. Let Symm : GL2(C) −→ GLm+1(C) be the mth

symmetric power representation. Then for π, a cuspidal representation of GL2, we have an

automorphic representation Symm(π) of GLm+1. If π = πf , where f is a holomorphic cusp form,

then it is a theorem due to Taylor, Thorne,... For a general π, it is only proved for m ≤ 4;

Gelbart-Jacquet (m = 2), Kim-Shahidi (m = 3), and Kim (m = 4).

Example 3. H = SO2n+1, SO2n, Sp2n, G = GLN , where N = 2n or 2n + 1. Then LH =

Sp2n(C), SO2n(C), SO2n+1(C), and r : LH −→ LG is the embedding. Arthur trace formula gives

the functoriality.

Example 4. Let SL2(C) × Sp2n(C) −→ Spin(4n+ 1,C) be the embedding. Here LPGL2 =

SL2(C) and LPGSp4n = Spin(4n+ 1,C). So we have a functoriality (πf ,Π) 7→ Ikeda lift. Here

Π is an anomalous representation Π = Π∞ ⊗⊗pΠp, where Π∞ is a discrete series representation

of SO2n+1(R), and Πp is the quotient of Ind
SO2n+1

B | | 2n−1
2 ⊗ | | 2n−3

2 ⊗ · · · ⊗ | | 12 .

We can use the converse theorem of Cogdell-Piatetski-Shapiro to prove some cases of functo-

riality:

Theorem 2.4 (Converse theorem). Suppose Π = ⊗Πv is an irreducible, admissible representation

of GLN such that ωΠ = ⊗ωΠv is a grössencharacter. Let S be a finite set of finite places and

let T S(m) be the set of all cuspidal representations of GLm that are unramified at S. Suppose

L(s, σ×Π) is nice (entire, functional equation, bounded in vertical strips) for all σ ∈ T S(m)⊗χ,

m = 1, ..., N − 2, where χ is a grössencharacter which is highly ramified at S. Then there exists

an automorphic representation Π′ of GLN such that Π′
v ' Πv for v /∈ S.

Outline of the proof of functoriality of Sym3(π):

This is obtained indirectly from the functorial product associated with the tensor product map

GL2(C)×GL3(C) −→ GL6(C).
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Let π1, π2 be cuspidal representations of GL2, GL3, resp. For each place v, πiv , i = 1, 2, are

parametrized by φiv : WFv ×SL2(C) −→ GLi+1(C), i = 1, 2. Then φ1v⊗φ2v : WFv ×SL2(C) −→
GL6(C). By the local Langlands correspondence, φ1v⊗φ2v gives rise to an irreducible, admissible

representation π1v �π2v of GL6(Fv). Let π1 � π2 = ⊗(π1v �π2v). It is an irreducible, admissible

representation of GL6(A).

Theorem 2.5 (Kim-Shahidi). [8] π1 � π2 is automorphic.

Let π be a cuspidal representation of GL2, and let Ad(π) be the adjoint square, i.e., Ad(π) =

Sym2(π)⊗ω−1
π , where ωπ is the central character. Then π�Ad(π) = (Sym3(π)⊗ω−1

π )�π. Here

� is the isobaric sum, and it denotes the unitary induction IndGL6
GL4×GL2

(Sym3(π)⊗ ω−1
π ) ⊗ π.

Apply the converse theorem to π1 � π2. Let S be a finite set of finite places such that π1v, π2v

are spherical for v /∈ S, v <∞. We need the triple product L-functions

L(s, σ × (π1 � π2)) = L(s, σ × π1 × π2),

where σ is a cuspidal representation of GLm, m = 1, 2, 3, 4. These are available from Langlands-

Shahidi method:

• m = 1: Rankin-Selberg L-function of GL2 ×GL3

• m = 2: D5 − 2 case. Use Spin(10).

• m = 3: E6 − 1 case. Use simply connected E6.

• m = 4: E7 − 1 case. Use simply connected E7.

Functional equation: due to Shahidi (1990)

Bounded in vertical strips: due to Gelbart and Shahidi (2001)

Entire: trick is to use χ which is highly ramified at one finite place

3. Arithmetic properties of L-functions

3.1. Sato-Tate, vertical Sato-Tate, and central limit theorem. Let Fk be the set of Hecke

eigen new forms of weight k with respect to SL2(Z). Let π = πf , f ∈ Fk, be the cuspidal

representation of GL2. Let L(s, πf) =
∑∞

n=1 af(n)n−s, where af (p) = 2 cos θf (p). Then we have

Sato-Tate: for any continuous function h : [−2, 2] −→ R,

1

π(x)

∑

p≤x
h(af (p)) −→

1

2π

∫ 2

−2
h(t)

√
4 − t2 dt, x→ ∞.
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Vertical Sato-Tate: Fix p. For any continuous function h : [−2, 2] −→ R,

1

|Fk|
∑

f∈Fk

h(af(p)) −→
∫ 2

−2
h(t) µp, k → ∞,

where µp = 1
2π (1 + 1

p)
√

4−t2
(1+ 1

p
)2− t2

p

dt. It is due to Serre, Conrey-Duke.

Central limit theorem (Nagoshi): For any continuous function h : R −→ R, under the condition
log k
logx → ∞,

1

|Fk|
∑

f∈Fk

h

(∑
p≤x af (p)√
π(x)

)
−→ 1√

2π

∫ ∞

−∞
h(t)e−

t2

2 dt, x→ ∞.

We can prove vertical Sato-Tate theorem and central limit theorem for Siegel modular forms

of degree 2.

Let k = (k1, k2), k1 ≥ k2 ≥ 3, and Sk(Γ(N ))tm be the space of Siegel holomorphic modular

forms of weight k which satisfy the Ramanujan conjecture. Let HEk(Γ(N ))tm be a basis. For

F ∈ HEk(Γ(N ))tm, let π = πF = ⊗πF,p be the cuspidal representation of GSp4. Then πF,p is tem-

pered, and the Satake parameter is {α0p, α0pα1p, α0pα2p, α0pα1pα2p}. We write it as {α±
F,p, β

±
F,p}

such that aF,p = αF,p + α−1
F,p = 2 cos θ1p and bF,p = βF,p + β−1

F,p = 2 cosθ2p, and θ1p, θ2p ∈ [0, π].

Then

Theorem 3.1 (Vertical Sato-Tate; K-Wakatsuki-Yamauchi). For a continuous function h :

[−2, 2]2/S2 = Ω −→ R,

1

|HEktm |
∑

F∈HEtm
k

h(aF,p, bF,p) −→
∫

Ω
h(x, y) µp, N + k1 + k2 → ∞,

where

µp =
(p+ 1)4

4p4
· 1

π2

∣∣∣∣∣
(1− e2iθ1)(1− e2iθ2)(1 − ei(θ1−θ2))(1− ei(θ1+θ2))

(1 − p−1e2iθ1)(1− p−1e2iθ2)(1 − p−1ei(θ1−θ2))(1− p−1ei(θ1+θ2))

∣∣∣∣∣

2

dθ1dθ2.

Sato-Tate conjecture is

1

π(x)

∑

p≤x
h(aF,p, bF,p) −→

∫

Ω
h(x, y) µST∞ , x→ ∞,

where

µST∞ = lim
p→∞

µp =
1

4π2

∣∣∣(1− e2iθ1)(1− e2iθ2)(1 − ei(θ1−θ2))(1− ei(θ1+θ2))
∣∣∣
2
dθ1dθ2

=
(x− y)2

4π2

√
4 − x2

√
4 − y2 dxdy.
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In order to prove this conjecture, we need to prove the holomorphy and non-vanishing of all

L(s, πF , r) for Re(s) ≥ 1 for any finite dimensional representation r : GSp4(C) −→ GLN(C).

Let L(s, πF , Spin) =
∑∞

n=1 λF (n)n−s be the spinor L-function, where λF (p) = aF,p + bF,p.

Then we have

Theorem 3.2 (Central limit theorem; K-Wakatsuki-Yamauchi). Under the condition
log(N+k1+k2)

log x →
∞,

1

|HEktm |
∑

F∈HEtm
k

h

(∑
p≤x λF (p)
√
π(x)

)
−→ 1√

2π

∫ ∞

−∞
h(t)e−

t2

2 dt, x→ ∞.

3.2. Low lying zeros. Katz and Sarnak proposed a conjecture on low-lying zeros of L-functions

in natural families, which says that the distributions of the low-lying zeros of L-functions in a

family F is predicted by a symmetry type G(F) attached to F: For a given entire L-function

L(s, π), we denote the non-trivial zeros of L(s, π) by 1
2 +

√
−1γj. Since we don’t assume GRH for

L(s, π), γj can be a complex number. Let φ(x) be an even Schwartz class function whose Fourier

transform

φ̂(x) =

∫ ∞

−∞
φ(y)e−2πixy dy

is compactly supported. We define

D(π, φ) =
∑

γj

φ
( γj

2π
log cπ

)
,

where cπ is the analytic conductor of L(s, π). It measures the density of zeros of L(s, π) which

are within O( 1
log cπ

) of the central point s = 1
2 .

Let F(X) be the set of L-functions in F such that X < cπ < 2X . The one-level density

conjecture says that

lim
X→∞

1

|F(X)|
∑

π∈F(X)

D(π, φ) =

∫ ∞

−∞
φ(x)W (G(F)) dx,

where W (G(F)) is the one-level density function described below.

There are five possible symmetry types of families of L-functions: U, SO(even), SO(odd), O,

and Sp. The corresponding density functions W (G) are determined by Katz-Sarnak. They are
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W (U)(x) = 1, W (SO(even))(x) = 1 +
sin 2πx

2πx
,

W (SO(odd))(x) = 1− sin 2πx

2πx
+ δ0(x),

W (O)(x) = 1 +
1

2
δ0(x), W (Sp)(x) = 1 − sin 2πx

2πx
.

By Plancherel’s formula (and because φ is even),

∫ ∞

−∞
φ(x)W (G)(x)dx =

∫ ∞

−∞
φ̂(x)Ŵ (G)(x)dx.

It is useful to record that

Ŵ (U)(x) = δ0(x), Ŵ (SO(even))(x) = δ0(x) +
1

2
χ[−1,1](x);

Ŵ (SO(odd))(x) = δ0(x) −
1

2
χ[−1,1](x) + 1;

Ŵ (O)(x) = δ0(x) +
1

2
; Ŵ (Sp)(x) = δ0(x) −

1

2
χ[−1,1](x).

There are many results which support the one-level density conjecture. Here an important

question is to find natural families of L-functions. Iwaniec, Luo and Sarnak studied families of

L-functions of newforms of even weight k and level N . Here one may fix the weight k and vary

N or vice versa.

Consider the families of Artin L-functions. For a number field K of degree n, let K̂ be its

Galois closure over Q so that Gal(K̂/Q) ' Sn. We attach the Artin L-function L(s, ρ, K) =
ζK(s)
ζ(s) ,

where ρ is a n− 1-dimensional representation of Sn. Let

L(X) = {L(s, ρ) : X < |dK| < 2X,Gal(K̂/Q) ' Sn}.

Theorem 3.3 (Cho-K). Let n ≤ 5. Then L(X) has Sp symmetry type, i.e.,

lim
X→∞

1

|L(X)|
∑

π∈L(X)

D(π, φ) = φ̂(0) − 1

2
φ(0) =

∫ ∞

−∞
φ(x)(1− sin 2πx

2πx
) dx,

where supp φ̂ is very small.

[In order to prove Katz-Sarnak conjecture, we need to show that it is true for arbitrary φ.]
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3.3. Transcendence of values of L-functions. For a positive integer k and a Dirichlet charac-

ter χ mod N such that χ(−1) = (−1)k, let Gk(N, χ) denote the space of all holomorphic modular

forms f(z) satisfying

f(γ(z)) = χ(d)(cz + d)kf(z), γ =

(
a b

c d

)
∈ Γ0(N ).

The subspace of Gk(N, χ) consisting of all cusp forms is denoted by Sk(N, χ). Further, we put

Gk(N ) =
⋃

χ

Gk(N, χ), Sk(N ) =
⋃

χ

Sk(N, χ),

where χ runs over all characters mod N . These are the spaces of holomorphic modular forms

and cusp forms of weight k with respect to the group

Γ1(N ) = {
(
a b

c d

)
∈ Γ0(N ) : a ≡ d ≡ 1(mod N )}.

Every element f of Gk(N ) has a Fourier expansion

f(z) =

∞∑

n=0

anq
n, q = e2πiz.

Put D(s, f) =
∑∞

n=1 ann
−s. For an arbitrary Dirichlet character ψ, we put

D(s, f, ψ) =

∞∑

n=1

ψ(n)ann
−s.

For a Dirichlet character ψ, let ψ0 be the primitive character associated with ψ and c its

conductor. Let

g(ψ) = g(ψ0) =

c∑

n=1

ψ0(n)e2πin/c

be the Gauss sum. For every positive integer m < k, we put

A(m, f, ψ) = (2πi)−mg(ψ)−1D(m, f, ψ).

With another Dirichlet character ψ′ and another positive integer m′ < k, we set

B(m,m′; f ;ψ, ψ′) = A(m, f, ψ)/A(m′, f, ψ′),

assuming that D(m′, f, ψ′) 6= 0.
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If f(z) =
∑∞

n=1 anq
n is primitive, then for every automorphism σ ∈ Aut(C), we can define a

primitive cusp form fσ by

fσ(z) =

∞∑

n=1

aσnq
n.

For f a primitive form, let Kf = Q(an, n = 1, 2, ...) be the Hecke field. Let Kψ = Q(ψ(n)).

Theorem 3.4 (Shimura). Let ψ, ψ′ be primitive Dirichlet characters, and f a primitive cusp form

belonging to Sk(N, χ). Let m,m′ be positive integers less than k such that (ψψ′)(−1) = (−1)m−m′

,

and D(m′, f, ψ′) 6= 0. Then

(1) If k > 2, B(m,m′; f, ψ, ψ′) ∈ KfKψKψ′.

(2) For every σ ∈ Aut(C), D(m′, fσ, ψ′σ) 6= 0, and B(m,m′; f, ψ, ψ′)σ = B(m,m′; fσ, ψσ, ψ′σ),

where ψσ(n) = ψ(n)σ.

(3) If k = 2, the same assertions hold provided that f satisfies the following: for a given

integer t, there is a primitive character ξ such that D(1, f, ξ) 6= 0 and ξ(−1) = (−1)t.

[This condition is always satisfied.]

An integer m is called critical for a motivic L-function L(s,M) if both L∞(s,M) and L∞(1−
s,M∨) are holomorphic at s = m. For example, in our case, we want Γ(s) and Γ(k − s) to be

holomorphic. So the critical points are 0 < m < k.

Corollary 3.5. As a special case, let f be a primitive cusp form belonging to Sk(N, χ). Let m,m′

be positive integers less than k. Then π−(m−m′)D(m, f)/D(m′, f) ∈ Kf , algebraic. When k = 2,

let f be a primitive cusp form belonging to S2(N, χ). Let ψ, ψ′ be primitive Dirichlet characters

such that D(1, f, ψ′) 6= 0. Then D(1, f, ψ)/D(1, f, ψ′) is algebraic.

In particular, m,m + 1 are critical, π−1D(m + 1, f)/D(m, f) is algebraic. If m is a critical

point, Shimura showed D(m, f) ∼ (2πi)mω±(f), where (−1)m = ±, and < f, f >= ω+(f)ω−(f).

Here A ∼ B means A/B ∈ Kf . We have the following conjecture due to Deligne:

Conjecture 3.6 (Deligne). Suppose m is a critical point.

(1)

L(m, Sym2l+1f) ∼ (2πi)m(l+1)ω±(f)
(l+1)(l+2)

2 ω∓(f)
l(l+1)

2 δ(χ)
l(l+1)

2 ,

where δ(χ) = (2πi)1−k
∑c−1

u=0 χ0(u)e
− 2πiu

c , and χ0 is the primitive character associated to χ with

conductor c.
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(2)

L(m, Sym2lf) ∼





(2πi)m(l+1)(ω+(f)ω−(f))

l(l+1)
2 δ(χ)

l(l+1)
2 , if m even

(2πi)ml(ω+(f)ω−(f))
l(l+1)

2 δ(χ)
l(l−1)

2 , if m odd
.

For Sym2f , it is due to Sturm:

L(m, Sym2f) ∼





(2πi)2m(ω+(f)ω−(f))δ(χ), if m even

(2πi)m(ω+(f)ω−(f)), if m odd
.

For Sym3f , it is due to Garrett and Harris:

L(m, Sym3f) ∼ (2πi)2mω±(f)3ω∓(f)δ(χ), (−1)m = ±.

For Sym4f , it takes the form:

L(m, Sym4f) ∼





(2πi)3m(ω+(f)ω−(f))3δ(χ)3, if m even

(2πi)2m(ω+(f)ω−(f))3δ(χ), if m odd
.

For f, h ∈ Gk(N ), one of them being a cusp form, we can define the Petersson inner product

〈f, h〉 by

〈f, h〉 = m(F )−1

∫

F
f(z)h(z)yk−2 dxdy, z = x+ iy,

where F is a fundamental domain for Γ1(N ), and m(F ) is the measure of F with respect to dxdy
y2

.

In fact, m(F ) = π
3 [SL2(Z) : Γ1(N ){±}] = π

3N
2
∏
p|N(1 − 1

p2
).

Theorem 3.7. Let f be a primitive element of Sk(N, χ), and ψ, ψ′ be two primitive Dirichlet

characters and m,m′ be positive integers such that (ψψ′)(−1) = (−1)m−m′−1 and 0 < m,m′ < k.

Put

C(m,m′; f, ψ, ψ′) =
A(m, f, ψ)A(m′, f, ψ′)

i1−kπg(χ)〈f, f〉 .

Then C(m,m′; f, ψ, ψ′) ∈ KfKψKψ′. Moreover, for any σ ∈ Aut(C),

C(m,m′; f ;ψ, ψ′)σ = C(m,m′; f ;ψσ, (ψ′)σ).

Let f ∈ Sk(Γ), Γ = SL2(Z). Let If be the Ikeda lift in Sk+n(Sp4n(Z)) (rank 2n and k + n

even).

Then Choie-Kohnen, Furusawa and Kawamura-Katsurada showed that

< If , If >

< f, f >n
∈ Kf .
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For f ∈ S2k−8(Γ), we can construct the Ikeda type lift on the exceptional group of type E7,3

of weight 2k. Then

Theorem 3.8 (Katsurada-K-Yamauchi).

< Ff , Ff >

< f, f >3
∈ Kf .
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